organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mehmet Akkurt,^a* Sema Öztürk,^a Zülbiye Önal,^b Behzat Altural^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.002 Å R factor = 0.032 wR factor = 0.085 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

N-(5-Benzoyl-2-oxo-4-phenyl-1,2-dihydropyrimidin-1-yl)benzamide

The molecule of the title compound, $C_{24}H_{17}N_3O_3$, is nonplanar. The pyrimidine ring is almost planar and makes dihedral angles of 72.47 (6), 64.77 (6) and 39.83 (5)° with the phenyl rings of the molecule. The molecules are linked through $C-H\cdots O$ and $N-H\cdots O$ interactions.

Comment

Various analogues of pyrimidines have been reported, showing diverse biological and medicinal importance (Brown, 1984, 1985), such as antibacterial, antifungal, antiviral, anti-AIDS, insecticidal and miticidal activity (Sankyo Co., 1984; De Clerq & Walker, 1985). In this paper, we present the structure of the title compound, (I), a new pyrimidine derivative.

The structure of (I) are shown in Fig. 1, with the atomnumbering scheme; selected geometric parameters are listed in Table 1. All bond distances and angles are in good agreement with those in related structures (Akkurt & Hiller, 1993; Akkurt *et al.*, 1992, 2003; Öztürk *et al.*, 1997, 1999; Türktekin *et al.*, 2003).

All atoms in the pyrimidine ring are almost coplanar, the largest deviation from the mean plane being 0.029 (1) Å for atom C24. The orientation of the substituents with respect to the pyrimidine ring are defined by the dihedral angles of 72.47 (6), 64.77 (6) and 39.83 (5)° for the phenyl rings *A* (C1–C6), *B* (C11–C16) and *C* (C18–C23), respectively. The other angles between the ring planes are 67.41 (6)° for *A/B*, 68.34 (6)° for *A/C* and 54.51 (6)° for *B/C*.

The crystal structure is stabilized by intermolecular C– $H \cdots O$ and N– $H \cdots O$ interactions (Fig. 2 and Table 2).

Experimental

1-Amino-5-benzoyl-4-phenyl-1*H*-pyrimidin-2-one (0.2 g) and benzoyl chloride (1.0 g) were mixed in a ratio of 1:4. This reaction mixture was stirred with the addition of CH₃COONa (1.0 g) and water (2.0 ml) for 24 h at room temperature. The solvent was then removed by evaporation and the residue was treated with dry diethyl ether. The white precipitate which formed was then filtered off, washed with pure water, and dried over P₂O₅. This product was crystallized from *n*-butanol (yield: 70%, m.p. 548 K). IR (KBr, cm⁻¹): Received 10 September 2004 Accepted 16 September 2004 Online 25 September 2004 3200 (N-H), 3010 (aromatic C-H), 1700-1660 (C=O), 1600 (C=C and C=N), 1480-1360 (aromatic skeleton vibration), 800-680 (pyrimidine ring vibration). Analysis calculated for C₂₄H₁₇N₃O₃: C 72.91, H 4.30, N 10.63%, found: C 72.35, H 4.39, N 10.37%.

 $D_x = 1.379 \text{ Mg m}^{-3}$

Cell parameters from 4211

 $w = 1/[\sigma^2(F_o^2) + (0.052P)^2]$ + 0.0168P] where $P = (F_o^2 + 2F_c^2)/3$

_3

Extinction correction: SHELXL97 Extinction coefficient: 0.0145 (13)

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.18 \text{ e Å}$ $\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$

Mo Ka radiation

reflections

 $\mu = 0.09 \text{ mm}^{-1}$

 $\theta = 1.9-27.3^{\circ}$

 $T=150~{\rm K}$

Plate, yellow $0.58 \times 0.40 \times 0.16 \text{ mm}$

Crystal data

C24H17N3O3 $M_r = 395.41$ Monoclinic, $P2_1/c$ a = 8.9688(5) Å b = 10.9081 (4) Å c = 19.8159(11) Å $\beta = 100.841 \ (4)^{\circ}$ $V = 1904.04 (17) \text{ Å}^3$ Z = 4

Data collection

Stoe IPDS-II diffractometer 4211 independent reflections 3172 reflections with $I > 2\sigma(I)$ ω scans $R_{\rm int}=0.038$ Absorption correction: by integration (X-RED32; $\theta_{\rm max} = 27.2^{\circ}$ Stoe & Cie, 2002) $h=-11\rightarrow 11$ $T_{\min} = 0.955, \ T_{\max} = 0.985$ $k=-13\rightarrow 13$ 29930 measured reflections $l = -25 \rightarrow 25$

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.032$
$wR(F^2) = 0.085$
S = 1.02
4211 reflections
340 parameters
All H-atom parameters refined

Table 1

Selected geometric parameters (\dot{A}, \circ) .

O1-C7	1.2171 (14)	N2-C8	1.3528 (15)
O2-C10	1.2191 (13)	N2-C24	1.4026 (14)
O3-C24	1.2282 (13)	N3-C17	1.3205 (15)
N1-N2	1.3964 (13)	N3-C24	1.3660 (14)
N1-C7	1.3841 (14)		
N2-N1-C7	115.65 (9)	N2-C8-C9	119.83 (10)
N1-N2-C8	117.98 (9)	O2-C10-C9	117.98 (10)
N1-N2-C24	118.88 (9)	O2-C10-C11	121.88 (10)
C8-N2-C24	122.82 (9)	N3-C17-C18	116.19 (10)
C17-N3-C24	120.60 (9)	N3-C17-C9	122.79 (10)
O1-C7-N1	120.72 (10)	N2-C24-N3	117.00 (9)
N1-C7-C1	115.98 (10)	O3-C24-N2	119.51 (10)
O1-C7-C1	123.18 (10)	O3-C24-N3	123.47 (10)
N2-N1-C7-C1	-172.91 (9)	C8-C9-C10-O2	112.40 (13)
N2-N1-C7-O1	10.85 (16)	C17-C9-C10-C11	120.27 (12)
C8-N2-C24-O3	176.62 (10)	C9-C10-C11-C16	-177.78 (11)
C17-N3-C24-O3	-177.13(10)	C9-C10-C11-C12	0.35 (16)
C2-C1-C7-O1	4.51 (18)	N3-C17-C18-C23	-40.68 (15)
C6-C1-C7-O1	-174.62(12)	C9-C17-C18-C19	-39.91 (16)
C8-C9-C10-C11	-69.01 (14)	C9-C17-C18-C23	139.41 (11)
C17-C9-C10-O2	-58.32 (15)	N3-C17-C18-C19	140.00 (11)

Tal	ble	2
-----	-----	---

Hydrogen-bonding geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.895 (15)	2.009 (15)	2.8772 (13)	163.4 (14)
0.997 (14)	2.570 (13)	3.3266 (14)	132.6 (10)
0.971 (15)	2.553 (15)	3.4007 (15)	145.9 (11)
1.006 (16)	2.484 (16)	3.3620 (15)	145.6 (12)
	<i>D</i> -H 0.895 (15) 0.997 (14) 0.971 (15) 1.006 (16)	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.895 (15) & 2.009 (15) \\ 0.997 (14) & 2.570 (13) \\ 0.971 (15) & 2.553 (15) \\ 1.006 (16) & 2.484 (16) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) 1 - x, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (iii) x, $\frac{3}{2} - y$, $\frac{1}{2} + z$.

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2

A packing diagram of the title compound. Dashed lines indicate hydrogen bonds.

All H atoms were located in a difference Fourier map and refined isotropically.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F.279 of the University Research Fund).

References

- Akkurt, M., Güldeste, A., Soylu, H., Altural, B. & Sarıpınar, E. (1992). Acta Crvst. C48, 315-317.
- Akkurt, M. & Hiller, W. (1993). Acta Cryst. C49, 747-749.
- Akkurt, M., Sarıpınar, E., Öztürk, S., Yılmaz, Ç. & Fun, H.-K. (2003). Z. Kristallogr. 218, 488-491.
- Brown, D. J. (1984). Compr. Heterocycl. Chem. 3, 57-61.
- Brown, D. J. (1985). The Chemistry of Heterocyclic Compounds, The Pyrimidines, Suppl. II, edited by A. Weissberger and E. C. Taylor. New York: Interscience.
- De Clerq, E. & Walker, R. T. (1985). Pharmacol. Ther. 26, 1-44.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. **32**, 837–838. Öztürk, S., Akkurt, M., Hökelek, T. & Yıldırım, İ. (1997). Cryst. Res. Technol. 32, 585-589.
- Öztürk, S., Akkurt, M., Razak, I. A., Fun, H. K. & Yıldırım, İ. (1999). Acta Cryst. C55, 97-99.
- Sankyo Co. (1984). Chem. Abstr. 101, 110939.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Türktekin, S., Akkurt, M., Yıldırım, İ., Özgen, Ö., Kendi, E. & Akçamur, Y. (2003). Acta Cryst. E59, o1949-o1950.